Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
geometry[parabola] - define a parabola
Calling Sequence
parabola(p, [A, B, C, E, F], n )
parabola(p, ['focus'=fou, 'vertex'=ver], n )
parabola(p, ['directrix'=dir, 'focus'=fou], n )
parabola(p, eqn, n )
Parameters
p
-
the name of the parabola
A, B, C, E, F
five distinct points
'focus'=fou
fou is the point which is the focus of the parabola
'vertex'=ver
ver is the point which is the vertex of the parabola
'directrix'=dir
dir is the line which is the directrix of the parabola
eqn
the algebraic representation of the parabola (i.e., a polynomial or an equation)
n
(optional) list of two names representing the names of the horizontal-axis and vertical-axis
Description
A parabola is the set of all points in the plane that are equidistant from a given line and a given point not on the line. A parabola is symmetric about the line that passes through the focus at right angles to the directrix. This line, called the axis of the parabola, meets the parabola at a point called the vertex.
The given line is called the directrix of the parabola, and the given point the focus.
A parabola p can be defined as follows:
from five distinct points. The input is a list of five points. Note that a set of five distinct points does not necessarily define a parabola.
from the focus and vertex. The input is a list of the form ['focus'=fou, 'vertex'=ver] where fou and ver are explained above.
from the directrix and focus. The input is a list of the form ['directrix'=dir, 'focus'= fou] where dir and fou are explained above.
from its internal representation eqn. The input is an equation or a polynomial. If the optional argument n is not given, then:
if the two environment variables _EnvHorizontalName and _EnvVerticalName are assigned two names, these two names will be used as the names of the horizontal-axis and vertical-axis respectively.
if not, Maple will prompt for input of the names of the axes.
To access the information relating to a parabola p, use the following function calls:
form(p)
returns the form of the geometric object (i.e., parabola2d if p is a parabola).
vertex(p)
returns the name of the vertex of p.
focus(p)
returns the name of the focus of p.
directrix(p)
returns the name of the directrix of p.
Equation(p)
returns the equation that represents the parabola p.
HorizontalName(p)
returns the name of the horizontal-axis; or FAIL if the axis is not assigned a name.
VerticalName(p)
returns the name of the vertical-axis; or FAIL if the axis is not assigned a name.
detail(p)
returns a detailed description of the parabola p.
The command with(geometry,parabola) allows the use of the abbreviated form of this command.
Examples
define parabola p1 from its algebraic representation:
define parabola p2 from its focus and vertex
define parabola p3 from its directrix and its focus
define parabola p4 from five distinct points
See Also
geometry[conic], geometry[draw], geometry[HorizontalName], geometry[objects], geometry[VerticalName]
Download Help Document