Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
diffalg[differential_sprem] - return sparse pseudo remainder of a differential polynomial
Calling Sequence
differential_sprem (q, L, R, 'h')
differential_sprem (q, C, 'h')
Parameters
q
-
differential polynomial in R
L
list or a set of differential polynomials in R
C
characterizable differential ideal
R
differential polynomial ring
h
(optional) name
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The function differential_sprem is an implementation of Ritt's reduction algorithm. It is an extension of the pseudo-remainder algorithm to differential polynomials.
L is assumed to form a differentially triangular set.
Let denote L or equations(C).
The function differential_sprem returns a differential polynomial r such that
(a)
(b) No proper derivative of the leaders of the elements of appears in .
(c) The degree according to a leader of any element of is strictly less in than in .
(d) The differential polynomial h is a power product of factors of the initials and the separants of the elements of A.
The differential_sprem(q, L, R, 'h') calling sequence returns an error message if contains 0. If contains a non zero element of the ground field of R, it returns zero.
The differential_sprem(q, C, 'h') calling sequence requires that q belong to the differential ring in which C is defined.
The function rewrite_rules shows how the equations of C are interpreted by the pseudo-reduction algorithm.
Then r is zero if and only if q belongs to C.
The command with(diffalg,differential_sprem) allows the use of the abbreviated form of this command.
Examples
Differential pseudo-division by a single differential polynomial:
Reduction according to a characterizable differential ideal:
See Also
diffalg(deprecated), diffalg(deprecated)/belongs_to, diffalg(deprecated)/differential_algebra, diffalg(deprecated)/differential_ring, diffalg(deprecated)/Rosenfeld_Groebner, DifferentialAlgebra[DifferentialPrem]
Download Help Document