Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SumTools[DefiniteSum][Definite] - compute closed forms of definite sums
Calling Sequence
Definite(f, k=m..n)
Definite(f, k=m..n, parametric)
Definite(f, k=alpha)
Definite(f, k=expr)
Parameters
f
-
expression; the summand
k
name; the summation index
m, n
expressions or integers; the summation bounds
parametric
(optional) literal name
alpha
RootOf expression
expr
expression not containing k
Description
The Definite(f, k=m..n) command computes a closed form of the definite sum of over the specified range of .
The function is a combination of different algorithms. They include
the method of integral representation,
the method of first computing a closed form of the corresponding indefinite sum and then applying the discrete Newton-Leibniz formula,
the method of computing closed forms of definite sums of hypergeometric terms (see SumTools[Hypergeometric]), and
the method of first converting the given definite sum to hypergeometric functions, and then converting these hypergeometric functions to standard functions (if possible).
For more information, see sum.
Options
If the option parametric is specified, then Definite returns a result that is valid for all possible integer values of any parameters occurring in the summand or the summation bounds. In general, the result is expressed in terms of piecewise functions.
Examples
Parametric case discussions may be returned:
Warning, unable to determine if the summand is singular in the interval of summation; try to use assumptions or use the parametric option
Sum over RootOf:
See Also
sum, SumTools[DefiniteSum], SumTools[DefiniteSum][CreativeTelescoping], SumTools[DefiniteSum][pFqToStandardFunctions], SumTools[DefiniteSum][Telescoping], SumTools[IndefiniteSummation], SumTools[Summation]
References
Egorychev, G.P. "Integral Representation and the Computation of Combinatorial Sums." Novosibirsk, Nauka. (1977). (in Russian); English: Translations of Mathematical Monographs. Vol. 59. American Mathematical Society. (1984).
Roach, K. "Hypergeometric Function Representations." Proceedings ISSAC 1996, pp. 301-308. New York: ACM Press, 1996.
van Hoeij, M. "Finite Singularities and Hypergeometric Solutions of Linear Recurrence Equations." Journal of Pure and Applied Algebra. Vol. 139. (1999): 109-131.
Zeilberger, D. "The Method of Creative Telescoping." Journal of Symbolic Computing. Vol. 11. (1991): 195-204.
Download Help Document