Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Student[NumericalAnalysis][LinearSolve] - numerically approximate the solution to a linear system
Calling Sequence
LinearSolve(A, b, opts)
LinearSolve(A, opts)
Parameters
A
-
Matrix; a square matrix or an augmented (A|b) matrix where
b
(optional) Vector or Matrix; a vector of length or a matrix of column length
opts
(optional) equation(s) of the form keyword = value, where keyword is one of initialapprox, maxiterations, method, stoppingcriterion, tolerance; options for numerically approximating the solution to a linear system
Description
The LinearSolve command numerically approximates the solution to the linear system , using the specified method.
The IterativeApproximate command and the MatrixDecomposition command are both used by the LinearSolve command.
If b is a matrix, then the systems will be solved for each column of , and hence there will be multiple solutions returned.
Different options are required to be specified in opts, depending on the method. These dependencies are outlined below.
The Notes section in the Student[NumericalAnalysis][IterativeApproximate] help page lists conditions under which the Jacobi, Gauss-Seidel, and successive over-relaxation iterative methods produce a solution.
Options
initialapprox = Vector or Matrix
The initial approximation. To obtain a float solution instead of an exact solution, the initialapprox should contain floats instead of integers. By default, a zero vector is used.
maxiterations = posint
The maximum number of iterations to perform while approximating the solution to . If the maximum number of iterations is reached and the solution is not within the specified tolerance, a plot of distances can still be returned. By default, maxiterations = 20.
method = jacobi, gaussseidel, SOR(numeric), LU, LU[tridiagonal], PLU, or PLU[scaled]
The method to use when solving the linear system . Please see the Notes section for sufficient conditions for convergence. This option is required. Each method is described below:
jacobi : The Jacobi method. Optionally, the stoppingcriterion, maxiterations, initialapprox and tolerance options may be specified as well.
gaussseidel : The Gauss-Seidel method. Optionally, the stoppingcriterion, maxiterations, initialapprox and tolerance options may be specified as well.
SOR(w) : The Successive Overrelaxation method with w as its extrapolation factor. Optionally, the stoppingcriterion, maxiterations, initialapprox and tolerance options may be specified as well.
LU and LU[tridiagonal] : LU Decomposition. This method performs LU factorization on A and then solves the subsequent systems. None of the remaining options are used with this method. An error will be raised if the LU[tridiagonal] method is specified and A is not tridiagonal.
PLU and PLU[scaled] : PLU Decomposition. This method performs PLU factorization on A and then solves the subsequent systems. None of the remaining options are used with this method.
stoppingcriterion = distance(norm)
The stopping criterion for an iterative technique; it is of the form stoppingcriterion=distance(norm), where distance is either relative or absolute and norm is a nonnegative integer, infinity, Euclidean, or Frobenius. By default, stoppingcriterion=relative(infinity).
tolerance = positive
The tolerance of the approximation. By default, a tolerance of is used.
Examples
Try solving multiple systems (but with the same coefficient Matrix)
See Also
Student[LinearAlgebra], Student[NumericalAnalysis], Student[NumericalAnalysis][BackSubstitution], Student[NumericalAnalysis][ComputationOverview], Student[NumericalAnalysis][ForwardSubstitution], Student[NumericalAnalysis][IterativeApproximate], Student[NumericalAnalysis][MatrixDecomposition]
Download Help Document