Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Slode[FPseries] - formal power series solutions for a linear ODE
Slode[FTseries] - formal Taylor series solutions for a linear ODE
Calling Sequence
FPseries(ode, var, vn, opts)
FTseries(ode, var, vn, opts)
FPseries(LODEstr, vn, opts)
FTseries(LODEstr, vn, opts)
Parameters
ode
-
linear ODE with polynomial coefficients
LODEstr
LODEstruct data structure
var
dependent variable, for example
vn
new function in the form
opts
optional arguments of the form keyword=value
Description
The FPseries and FTseries commands return a power series solution of the given linear ordinary differential equation with polynomial coefficients which must be homogeneous or inhomogeneous with a right hand side that is a polynomial, a rational function, or a "nice" power series (see LODEstruct) in the independent variable .
If ode is an expression, then it is equated to zero.
The routine returns an error message if the differential equation ode does not satisfy the following conditions.
ode must be linear in var
ode must have polynomial coefficients in
ode must be homogeneous or have a right-hand side that is rational or a "nice" power series in
The coefficients of ode must be either rational numbers or depend rationally on one or more parameters.
A homogeneous linear ordinary differential equation with coefficients that are polynomials in has a linear space of formal power series solutions where is one of , , , or , is the expansion point, and the sequence satisfies a homogeneous linear recurrence. In the case of an inhomogeneous equation with a right-hand side that is a "nice" power series, satisfies an inhomogeneous linear recurrence.
The routines choose a polynomial basis depending on the expansion point. If is a rational or algebraic number, then the basis is for FPseries and for FTseries. If , then the basis is for FPseries and for FTseries.
Both routines then build a linear recurrence for the sequence of coefficients of the series solution in the chosen basis. They determine the number of initial values of this sequence so that it is possible to calculate any element from these initial values using the recurrence (taking into account the order and the zeros of the leading coefficients of the recurrence), and calculate these initial values.
The formal power series is represented by an FPSstruct data structure:
where are expressions, the initial series coefficients.
In the case of an inhomogeneous equation with a rational right hand side the commands work similarly. In the case of a "nice" power series right hand side the recurrence is inhomogeneous.
Options
x=a or 'point'=a
Specifies the expansion point in the case of a homogeneous equation or an inhomogeneous equation with rational right-hand side. The default is . It can be an algebraic number, depending rationally on some parameters, or . In the case of a "nice" series right-hand side the expansion point is given by the right-hand side and cannot be changed.
'terms'=N
Specifies a nonnegative integer N, the required number of initial terms of the series solutions. If this option is given, then the routine compares it with the determined number and, if , calculates the first N initial coefficients.
'free'=C
Specifies a base name C to use for free variables C[0], C[1], etc. The default is the global name _C. Note that the number of free variables may be less than the order of the given equation if the expansion point is singular.
Examples
Some inhomogeneous examples:
See Also
LODEstruct, Slode, Slode[msparse_series_sol], Slode[series_by_leastsquare]
Download Help Document