Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SNAP[AreCoprime] - determine if two numeric polynomials are relatively prime up to a given error bound
SNAP[IsSingular] - determine if a numeric polynomial has a double root up to a given error bound
Calling Sequence
AreCoprime(a, b, z, eps, out)
IsSingular(a, z, eps, out)
Parameters
a, b
-
univariate numeric polynomials
z
name; indeterminate for a and b
eps
non-negative numeric; error bound
out
(optional) equation of the form output = obj where obj is 'BC' or a list containing one or more instances of this name; select result objects to compute
Description
The AreCoprime(a, b, z, eps) command checks whether univariate numeric polynomials a, b in z remain coprime after perturbations of order eps. This is done by computing reliable lower and upper bounds on the distance between the pair (a, b) and the set of the univariate complex polynomial pairs in z with degrees that do not exceed those of a and b, and that have at least one common root. (See SNAP[DistanceToCommonDivisors].)
The lower bound LB is obtained using the SNAP[DistanceToCommonDivisors] function. The upper bound UP is the minimum between the 1-norm of a and the 1-norm of b.
If eps > UP, false is returned;
if eps < LB, true is returned;
if LB <= eps <= UP, FAIL is returned because it is impossible to provide a reliable answer.
The IsSingular(a, z, eps) command checks whether the univariate numeric polynomial a in z has common roots up to perturbations of order eps. It essentially calls AreCoprime(a, b, z) with b = diff(a, z).
The output option (out) determines the content of the returned expression sequence.
As specified by the out option, Maple returns an expression sequence containing one or more BC, which is the list [v, u] of the numeric polynomials in z that satisfy av+bu=1 and and (bezout coefficients for coprime polynomials a and b). This list is empty if the routine returns false or FAIL.
Examples
See Also
expand, SNAP[DistanceToCommonDivisors], SNAP[DistanceToSingularPolynomials]
References
Beckermann, B., and Labahn, G. "A fast and numerically stable Euclidean-like algorithm for detecting relatively prime numerical polynomials." Journal of Symbolic Computation. Vol. 26, (1998): 691-714.
Beckermann, B. and Labahn, G. "When are two numerical polynomials relatively prime?" Journal of Symbolic Computation. Vol. 26, (1998): 677-689.
Download Help Document