Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PolynomialIdeals[IdealInfo] - return information about an ideal
Calling Sequence
Generators(J)
IdealInfo[Generators](J)
IdealInfo[Characteristic](J)
IdealInfo[Variables](J)
IdealInfo[Parameters](J)
IdealInfo[NonVariables](J)
IdealInfo[KnownGroebnerBases](J, X)
IdealInfo[DefaultMonomialOrder](J, T, X)
Parameters
J
-
polynomial ideal
T
(optional) type of monomial order
X
(optional) set of monomial order variables
Description
The IdealInfo subpackage is a collection of simple procedures that return information about polynomial ideals. They are intended to serve as a programmer interface to the PolynomialIdeal data structure. For compatibility with future releases, it is strongly recommended that you use these commands instead of accessing the operands of the data structure directly.
The Generators, Characteristic, and Variables commands return the generators, ring characteristic, and ring variables, respectively. The Generators command is also aliased as PolynomialIdeals[Generators].
The Parameters command returns the set of indeterminates appearing in the generators that are not ring variables. The NonVariables command returns the set of all indeterminates that appear inside a radical or RootOf.
The KnownGroebnerBases command outputs the set of monomial orders for which Groebner bases are stored. An optional second argument restricts the orders to a certain set of variables. To obtain the actual Groebner bases, use the Groebner[Basis] command.
The DefaultMonomialOrder command returns a monomial order for which a Groebner basis is stored or can be computed quickly. Optional arguments can specify both the type of monomial order (for example, 'plex') and the set of variables to use.
IdealInfo is a subpackage of the PolynomialIdeals package, and its various commands can be used in the form IdealInfo[command](arguments) only after executing with(PolynomialIdeals). However, they can always be accessed through the long form of the command using PolynomialIdeals[IdealInfo][command](arguments).
Examples
POLYNOMIALIDEAL(x^2+4*z,y^2+2*(3+4*w)^(1/2),characteristic = 5,variables = {x, y},known_groebner_bases = (table([])))
POLYNOMIALIDEAL(x^2+4*z,y^2+2*(3+4*w)^(1/2),characteristic = 5,variables = {x, y},known_groebner_bases = (table([(tdeg(y,x))=[[1, x^2, x^2+4*z], [1, y^2, y^2+2*(3+4*w)^(1/2)]],(tdeg(x,y))=[[1, y^2, y^2+2*(3+4*w)^(1/2)], [1, x^2, x^2+4*z]],(plex(x,y))=[[3, y^2, 3*y^2+(3+4*w)^(1/2)], [1, x^2, x^2+4*z]]])))
See Also
Groebner[Basis], lprint, MonomialOrders, PolynomialIdeals, PolynomialIdeals[PolynomialIdeal]
Download Help Document