Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
MultiSeries[series] - generalized series expansion
Calling Sequence
series(expr, x)
series(expr, x=a)
series(expr, x=a, n)
Parameters
expr
-
algebraic expression
x
name; the series variable
a
(optional) algebraic expression; the expansion point
n
(optional) non-negative integer; the expansion order
Description
The series function computes a truncated series expansion of expr, with respect to the variable x, about the point a, up to order n.
If a is not given, it defaults to 0. If a is infinity, then an asymptotic expansion is computed.
The series function of the MultiSeries package is intended to be used in the same manner as the top-level series function.
Like the series function, when the result is a power series expansion, it is returned using the series type and otherwise it is represented in ordinary sum-of-products form.
The underlying engine for computing expansions is the MultiSeries[multiseries] function. In particular, the variable x is assumed to tend to its limit point a in the manner described in MultiSeries[multiseries].
The precision n can be infinity. In that case, the computation will terminate either when the input is a polynomial or when it contains a term. This last functionality provides a way to compute an expansion up to a given absolute precision.
The environment variable Order determines the default precision used in intermediate computations when the working precision n is not specified on input.
In rare cases, it might be necessary to increase the value of the global variable Order in order to improve the ability of series to solve problems with significant cancellation. This is made explicit by an error message coming from multiseries.
It can also happen that the result is wrong because Testzero failed to recognize that the leading coefficient of a multiseries expansion happens to be 0. In those cases, it is necessary to modify this environment variable (see Testzero).
Examples
See Also
MultiSeries, MultiSeries[asympt], MultiSeries[LeadingTerm], MultiSeries[limit], MultiSeries[multiseries], Order, series, Testzero
Download Help Document