Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
MultiSeries[asympt] - generalized asymptotic expansion
Calling Sequence
asympt(f,x)
asympt(f,x,n)
Parameters
f
-
algebraic expression in x
x
name
n
positive integer (expansion order)
Description
The function asympt computes the asymptotic expansion of f with respect to the variable x (as x approaches infinity).
The asympt function of the MultiSeries package is intended to be used in the same manner as the top-level asympt function.
The third argument n specifies the truncation order of the series expansion. If no third argument is given, the value of the global variable Order (default Order = 6) is used.
Like the asympt function, the result is returned in sum-of-products form.
The underlying engine for computing expansions is the MultiSeries[multiseries] function. In particular, the variable x is assumed to tend to infinity along the positive real axis (this can be modified by a change of variables).
In rare cases, it might be necessary to increase the value of the global variable Order in order to improve the ability of asympt to solve problems with significant cancellation. This is made explicit by an error message coming from multiseries.
It can also happen that the result is wrong because Testzero failed to recognize that the leading coefficient of a multiseries expansion happens to be 0. In those cases, it is necessary to modify this environment variable (see Testzero).
The call asympt(f,x) is equivalent to series(f,x=infinity).
Examples
See Also
asympt, limit, MultiSeries, MultiSeries[limit], Order, Testzero
Download Help Document