Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearAlgebra[FrobeniusForm] - reduce a square Matrix to Frobenius form (rational canonical form)
Calling Sequence
FrobeniusForm(A, out, options, outopts)
RationalCanonicalForm(A, out, options, outopts)
Parameters
A
-
Matrix
out
(optional) equation of the form output = obj where obj is one of 'F' or 'Q', or a list containing one or more of these names; selects result objects to compute
options
(optional); constructor options for the result object(s)
outopts
(optional) equation(s) of the form outputoptions[o] = list where o is one of 'F' or 'Q'; constructor options for the specified result object
Description
The FrobeniusForm(A) command returns the Frobenius form F of square Matrix A.
This function can also be invoked using the RationalCanonicalForm command.
The Frobenius form Matrix F has the following structure:
F = DiagonalMatrix([C[1], C[2],..., C[k]])
where the are companion Matrices associated with polynomials where the are a factorization of the characteristic polynomial of A with the property that divides , for = 2..k.
The Frobenius form defined in this way is unique (if you require that divides ).
The columns of Q form a rational canonical basis for A.
The output option (out) determines the content of the returned expression sequence.
Depending on what is included in the output option, an expression sequence containing one or more of the factors F (the Frobenius form), or Q (the transformation Matrix) can be returned. If output is a list, the objects are returned in the same order as specified in the list.
The returned Matrix objects have the property that .
The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result(s). These options may also be provided in the form outputoptions[o]=[...], where [...] represents a Maple list. If a constructor option is provided in both the calling sequence directly and in an outputoptions[o] option, the latter takes precedence (regardless of the order).
The following list indicates permissible values for index [o] of outputoptions with their corresponding meaning.
F
Frobenius form
Q
transformation Matrix
Examples
See Also
LinearAlgebra, LinearAlgebra[CharacteristicPolynomial], LinearAlgebra[CompanionMatrix], LinearAlgebra[DiagonalMatrix], LinearAlgebra[MatrixInverse], Matrix
Download Help Document