Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Finance[WienerProcess] - create new Wiener process
Calling Sequence
WienerProcess(J)
WienerProcess(Sigma)
Parameters
J
-
(optional) stochastic process with non-negative increments, or a deterministic function of time; subordinator
Sigma
Matrix; covariance matrix
Description
The WienerProcess command creates a new Wiener process. If called with no arguments, the WienerProcess command creates a new standard Wiener process, , that is a Gaussian process with independent increments such that with probability , and for all .
The WienerProcess(Sigma) calling sequence creates a Wiener process with covariance matrix Sigma. The matrix Sigma must be a positive semi-definite square matrix. The dimension of the generated process will be equal to the dimension of the matrix Sigma.
If an optional parameter J is passed, the WienerProcess command creates a process of the form , where is the standard Wiener process. Note that the subordinator must be an increasing process with non-negative, homogeneous, and independent increments. This can be either another stochastic process such as a Poisson process or a Gamma process, a procedure, or an algebraic expression.
Compatibility
The Finance[WienerProcess] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
First create a standard Wiener process and generate replications of the sample path and plot the result.
Define another stochastic variable as an expression involving . You can compute the expected value of using Monte Carlo simulation with the specified number of replications of the sample path.
Define another stochastic variable , which also depends on but uses symbolic coefficients. Note that is an Ito process, so it is governed by the stochastic differential equation (SDE) . You can use the Drift and Diffusion commands to compute and .
Create a subordinated Wiener process that uses a Poisson process with intensity parameter as subordinator.
Here is a representation of the Ornstein-Uhlenbeck process in terms of or a subordinated Wiener process. In this case the subordinator is a deterministic process that can be specified as a Maple procedure or an algebraic expression.
See Also
Finance[BlackScholesProcess], Finance[CEVProcess], Finance[Diffusion], Finance[Drift], Finance[ExpectedValue], Finance[GeometricBrownianMotion], Finance[ItoProcess], Finance[PathPlot], Finance[SamplePath], Finance[SampleValues], Finance[StochasticProcesses], Finance[WienerProcess]
Download Help Document