Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Finance[ItoProcess] - create new Ito process
Calling Sequence
ItoProcess(, mu, sigma)
ItoProcess(, mu, sigma, x, t)
ItoProcess(X, Sigma)
Parameters
-
the initial value
mu
the drift parameter
sigma
volatility parameter
X
Vector of one-dimensional Ito processes
Sigma
matrix
Description
The ItoProcess command creates a new one- or multi-dimensional Ito process, which is a stochastic process governed by the stochastic differential equation (SDE)
where
is the drift parameter
is the diffusion parameter
and
is the standard Wiener process.
The parameter defines the initial value of the underlying stochastic process. It must be a real constant.
The parameter mu is the drift. In the simplest case of a constant drift mu is real number (that is, any expression of type realcons). Time-dependent drift can be given either as an algebraic expression or as a Maple procedure. If mu is given as an algebraic expression, then the parameter t must be passed to specify which variable in mu should be used as a time variable. A Maple procedure defining a time-dependent drift must accept one parameter (the time) and return the corresponding value for the drift.
The parameter sigma is the diffusion. Similar to the drift parameter, the volatility can be constant or time-dependent.
One can use the ItoProcess command to construct a multi-dimensional Ito process with the given correlation structure. To be more precise, assume that is an -dimensional vector whose components , ..., are one-dimensional Ito processes. Let ,...,, and ,..., be the corresponding drift and diffusion terms. The ItoProcess(X, Sigma) command will create an -dimensional Ito process such that
where is an -dimensional Wiener process whose covariance matrix is Sigma. Note that the matrix Sigma must have numeric coefficients.
Compatibility
The Finance[ItoProcess] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
You can generate sample paths for this stochastic process (in order to do this, we must assign numeric values to mu and sigma).
Here is an example of a multi-dimensional Ito process.
In this example, construct a two-dimensional Ito process using two one-dimensional projections and a given covariance matrix.
See Also
Finance[BlackScholesProcess], Finance[CEVProcess], Finance[Diffusion], Finance[Drift], Finance[ExpectedValue], Finance[GeometricBrownianMotion], Finance[ItoProcess], Finance[PathPlot], Finance[SamplePath], Finance[SampleValues], Finance[StochasticProcesses], Finance[WienerProcess]
References
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Download Help Document