Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Domains[domain] - Domains (parameterized types)
Description
Domains in Domains are functions which return tables of operations for manipulating objects in the domain. For example, Integers() returns a table of operations for computing with integers including `+` addition, `-` subtraction, `*` multiplication, etc.
Domains can be parameterized by other domains and values; for example, the domain takes a coefficient ring R and a variable x as a parameter. The coefficient ring must be a Domains domain which belongs to the category Ring; that is, it must support all the operations of a ring. The variable x must be a name.
All domains support belongs to the category Set which supports the operations
=, <> -- boolean equality of domains elements
Input -- for converting expressions into the domain data representation
Output -- for converting from the domain representation to an output form
Random -- for generating a pseudo-random value from the domain
Type -- for testing if a value is a valid domain element
The command show(D, operations) can be used to print out all the operations that are defined for a domain. Operations marked by -- are not implemented. A list of the domains constructors in Domains is
Z
Integers()
Q
Rationals()
G
Gaussian(R:Ring)
Zmod
Zmod(n:posint)
GF
GaloisField(p:prime, k:posint)
DUP
DenseUnivariatePolynomial(R:Ring, x:name)
OUP
OrderedUnivariatePolynomial(P:UnivariatePolynomial(R),
f:(R,R) -> Boolean)
DEV
DenseExponentVector(X:list(name))
PEV
PrimeExponentVector(X:list(name))
MEV
MapleExponentVector(X:list(name))
TEV
MacaulayExponentVector(X:list(name))
TDMP
TableDistributedMultivariatePolynomial(R:Ring, E:ExponentVector)
SDMP
SparseDistributedMultivariatePolynomial(R:Ring, E:ExponentVector)
QF
ExpandedNormalFormQuotientField(D:GcdDomain)
ENFQF
FNFQF
FactoredNormalFormQuotientField(D:GcdDomain)
RF
RationalFunction(D:GcdDomain, X:list(name))
LUPS
LazyUnivariatePowerSeries(R:Ring, x:name)
Matrix(R:Ring)
SM
SquareMatrix(n:posint, R:Ring)
SAE
AlgebraicExtension(D:UnivariatePolynomial, m:D)
In addition, there are some special domains that use the Maple representation for polynomials to try to get back some efficiency for integer and rational coefficients.
MUP
MapleUnivariatePolynomial(R:{Z, Q, Zmod}, x:name)
MMP
MapleMultivariatePolynomial(R:{Z, Q, Zmod}, X:list(name))
See Also
Domains, RealDomain
Download Help Document