Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[CurvatureTensor] - calculate the curvature tensor of a linear connection on the tangent bundle or on a vector bundle
Calling Sequences
CurvatureTensor(g)
CurvatureTensor(C)
Parameters
g - a metric on the tangent bundle of a manifold
C - a connection on the tangent bundle of a manifold or on a vector bundle
Description
Let nabla be a connection on the tangent bundle of a manifold M and let chi(M) be the module of all vector fields on M. The curvature tensor of nabla is the type (1,3) tensor R (contravariant rank 1, covariant rank 3) which, when viewed as a linear map R: chi(M) x chi(M) -> Hom(chi(M)), is given by
R(X, Y)(Z) = nabla_X(nabla_Y(Z)) - nabla_Y(nabla_X(Z)) - nabla_[X, Y](Z).
Here X, Y and Z are vector fields on M.
Let nabla be a connection on a vector bundle E -> M and let Sigma(E) be the module of all sections of E. The curvature tensor of nabla is the type (3, 1) tensor R (contravariant rank 1, covariant rank 3) which, when viewed as a linear map R: chi(M) x chi(M) -> Hom(Sigma(E)) is given by R(X, Y)(Z) = nabla_X(nabla_Y(Z)) - nabla_Y(nabla_X(Z)) - nabla_[X, Y](Z). Here X and Y are vector fields on M and Z is a section of E.
The first Bianchi identity for the curvature tensor of a connection on the tangent bundle of a manifold asserts that R + nabla(S) + S . S (skew-symmetrized on indices 1, 3, 4) = 0. The second Bianchi identity asserts that nabla(R) + R . S (skew-symmetrized on indices 3, 4, 5) = 0. Here S is the torsion tensor of the connection, nabla(S) the covariant derivative of S, S . S is the contract of S &t S over the 3rd and 5th indices, and R . S denotes the contraction of R &t S over the 3rd and 6th indices.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form CurvatureTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-CurvatureTensor.
Examples
Example 1.
First create a 3 dimensional manifold M and define a metric on the tangent space of M.
Calculate the curvature tensor for the metric g1.
Example 2.
First create a 3 dimensional manifold M and define a connection on the tangent space of M.
Here are two simple procedures we shall use for checking the Bianchi identities.
Bianchi1 := proc(R, C)
end:
Bianchi2 := proc(R, C)
Use the above programs to check the Bianchi identities.
Example 3.
Define a frame on M and use this frame to specify a connection on the tangent space of M.
Example 4.
First create a rank 3 vector bundle E on M and define a connection on E.
See Also
Physics[Riemann], DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], Connection, CovariantDerivative, Physics[D_], SectionalCurvature, RicciScalar, RicciTensor, Physics[Ricci], TorsionTensor, Physics[Weyl]
Download Help Document