Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Query[Jacobi] - check if a list of structure equations defines a Lie algebra by verifying the Jacobi identities
Calling Sequences
Query(Alg, "Jacobi")
Query(Alg, parm, "Jacobi")
Parameters
Alg - (optional) the name of an initialized Lie algebra
parm - (optional) a set of parameters appearing in the structure equations of the Lie algebra g
Description
A bracket operation [ , ] on a vector space g defines a Lie bracket if it is bi-linear, skewsymmetric, and satisfies [[x, y], z] + [[z, x], y] + [[y, z], x] = 0.
In terms of the standard exterior derivative operator d defined on the exterior algebra of the dual space g* (defined on 1-forms by d(x, y) = - [x, y]), the Jacobi identities are equivalent to d^2 = 0.
The program DGsetup does not check that its input, a Lie algebra data structure, actually defines a Lie algebra. To verify that a Lie algebra data structure does indeed define a Lie algebra, initialize the Lie algebra data structure, and run Query("Jacobi").
Query(Alg, "Jacobi") returns true if the Jacobi identities hold (in which case Alg defines a Lie algebra) and false otherwise. If the algebra is unspecified, then LieAlgebraCheck is applied to the current algebra.
Query(Alg, parm, "Jacobi") returns a sequence TF, Eq, Soln, AlgList. Here TF is true if Maple finds parameter values for which the Jacobi identities are valid and false otherwise; Eq is the set of equations (with the variables parm as unknowns) which must be satisfied for the Jacobi identities to hold; Soln is the list of solutions to the equations Eq; and AlgList is the list of Lie algebra data structures obtained from the parameter values given by various solutions in Soln.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Examples
Example 1.
We begin by defining a bracket operation on a 3 dimensional vector space with basis [x1, x2, x3]. This bracket depends upon two parameters a1 and a2.
We shall determine for which parameter values this bracket satisfies the Jacobi identities.
Convert to a Lie algebra data structure.
Initialize this data structure.
The equations that must be satisfied for the bracket to satisfy Jacobi are:
This leads to two cases a1 = 0 or a2 = 0. We initialize the resulting Lie algebra data structures and print the multiplication tables.
Example 2
The Jacobi identities are equivalent to the vanishing of the square of the exterior derivative. For example:
See Also
DifferentialGeometry, LieAlgebras, ExteriorDerivative, LieBracket, Query
Download Help Document