Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
tensor[convertNP] - convert the connection coefficients or the Riemann tensor into Newman-Penrose formalism
Calling Sequence
convertNP( 'spin', Gamma)
convertNP( 'curve', Riemann, conj_pairs)
Parameters
'spin', 'curve'
-
first parameter is a flag and takes either 'spin' or 'curve'
Gamma
covariant connection coefficients (thus has character )
Riemann
covariant Riemann tensor (thus has character and indexing function cov_riemann in component array)
conj_pairs
optional parameter to convertNP(...) when the flag is 'curve'. It holds a list of pairs (pair: a 2-element list) of names to be treated as complex conjugates in the construction of the 'Phi' field of the curvature component table
Description
This function can be used to compute either the spin coefficients or the curvature components in the rigid frame in which the metric assumes the form :
given correspondingly the covariant components of the connections or the covariant Riemann tensor in that particular rigid frame.
When the first parameter is fed with 'spin' then convertNP() checks if the second one (denoted as Gamma above) is a tensor_type with character . If it does, then the function constructs a spin coefficient table based on Gamma.
When the first parameter is fed with 'curve', then convertNP() checks if the second one (denoted as Riemann above) has character and indexing function cov_riemann in its component array. If it does, then the function goes on to construct a curvature component table based on Riemann.
Complex conjugation is required during the construction of the 'Phi' field which is a hermitian matrix, of the curvature table. If a third argument of a list of pairs of names is passed in, these pairs will be treated as complex conjugates when conjugation is taken for building the 'Phi' field. Note that is the default value of conj_pairs and any third argument supplied by the user would be appended to it. Any other names not specified in conj_pairs are treated as real.
This function is part of the tensor package, and can be used in the form convertNP(..) only after performing the command with(tensor), or with(tensor, convertNP). The function can always be accessed in the long form tensor[convertNP].
Examples
First specify the constant metric wished to be used.
Entering the coordinates and covariant tetrad of the Plane wave metric
Compute the covariant components of the connections.
Now convert Gamma to the spin coefficients in Newman-Penrose formalism.
Compute the covariant Riemann curvature tensor.
Lastly, convert Rm to the curvature components in Newman-Penrose formalism.
Now demonstrate the use of conj_pairs :
See Also
tensor, tensor[conj], tensor[connexF], tensor[npcurve], tensor[npspin], tensor[RiemannF]
Download Help Document