Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
tensor[Weyl] - compute the covariant Weyl tensor
Calling Sequence
Weyl( g, Rmn, Ricci, R)
Parameters
g
-
rank two tensor_type of character [-1,-1] representing the covariant metric tensor; specifically, ; the g component array should use the symmetric indexing function
Rmn
rank four tensor_type of character [-1,-1,-1,-1] representing the covariant Riemann curvature tensor; specifically, ; the Rmn component array should use the cov_riemann indexing function provided by the tensor package
Ricci
rank two tensor_type of character [-1,-1] representing the covariant Ricci tensor; specifically, ; the Ricci component array should use the symmetric indexing function
R
rank zero tensor_type of character [], representing the Ricci scalar (note it is recognized as a zeroth rank tensor_type in the tensor package).
Description
The resultant tensor_type, WEYL say, of this routine is the covariant Weyl tensor, indexed as shown below:
Indexing Function: Because the covariant Weyl tensor components have the same symmetrical properties as those of the Riemann tensor, the component array of the result uses the package's cov_riemann indexing function.
Simplification: This routine uses the `tensor/Weyl/simp` routine for simplification purposes. The simplification routine is applied to each component of result after it is computed. By default, `tensor/Weyl/simp` is initialized to the `tensor/simp` routine. It is recommended that the `tensor/Weyl/simp` routine be customized to suit the needs of the particular problem.
This function is part of the tensor package, and so can be used in the form Weyl(..) only after performing the command with(tensor) or with(tensor, Weyl). The function can always be accessed in the long form tensor[Weyl](..).
Examples
Define the coordinate variables and the covariant components of the Schwarzchild metric.
Now compute all of the necessary quantities for the computation of the Weyl tensor components, and then compute the components themselves:
Show the nonzero components.
See Also
Physics[Christoffel], Physics[D_], Physics[d_], Physics[Einstein], Physics[g_], Physics[LeviCivita], Physics[Ricci], Physics[Riemann], Physics[Weyl], tensor, tensor[displayGR], tensor[indexing], tensor[Ricci], tensor[Ricciscalar], tensor[Riemann], tensor[simp], tensor[tensorsGR]
Download Help Document