Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
sumtools[sumrecursion] - Zeilberger's algorithm
Calling Sequence
sumrecursion(f, k, s(n))
Parameters
f
-
expression
k
name, summation variable
n
name, recurrence variable
s
name, recurrence function
Description
This function is an implementation of Koepf's extension of Zeilberger's algorithm, calculating a (downward) recurrence equation for the sum
the sum to be taken over all integers k, with respect to n if f is an (m,l)-fold hypergeometric term with respect to (n,k) for some m and l. The minimal values for m, and l are determined automatically.
The output is a recurrence which equals zero. The recurrence is a function of n the recurrence variable and .
An expression f is called (m,l)-fold hypergeometric term with respect to (n,k) if
are rational with respect to n and k. This is typically the case for ratios of products of rational functions, exponentials, factorials, binomial coefficients, and Pochhammer symbols that are rational-linear in their arguments. The implementation supports this type of input.
The command with(sumtools,sumrecursion) allows the use of the abbreviated form of this command.
Examples
Dougall's identity
See Also
sum, sumtools, sumtools[gosper], SumTools[Hypergeometric][Zeilberger], sumtools[hyperterm]
Download Help Document