Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
simplex[setup] - construct a set of equations with variables on the lhs
Calling Sequence
setup(C)
setup(C, NONNEGATIVE)
setup(C, NONNEGATIVE, 't')
Parameters
C
-
set of linear equations
't'
name
Description
The function setup(C) constructs a set of equations in a form with isolated variables on the left-hand side. Those variables form a basis for the corresponding linear system, and do not occur on the right hand side of any equation. Slack variables of the form _SL.i are introduced to deal with inequalities. Unrestricted variables are transformed to be the difference of two variables.
The resulting system is equivalent to the original system C, in that solutions to the new system can be transformed into solutions of the original system. The resulting system need not correspond to a feasible basic solution.
If the optional second parameter 'NONNEGATIVE' is present, all variables are assumed to be non-negative. If a third parameter is present, then it is assigned the transformations used for any variable deemed to be unrestricted.
The command with(simplex,setup) allows the use of the abbreviated form of this command.
Examples
Download Help Document