Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Rational Polynomials (Rational Functions)
Description
In Maple rational functions are created from names, integers, and other Maple values for the coefficients using the arithmetic operators +, -, *, /, and ^. For example: 7+x/(x^4-3*x+1) creates the rational function
It is a rational function in the variable x over the field of rational numbers. Multivariate rational functions, and rational functions over other number rings and fields are constructed similarly. For example: y^3/x/(sqrt(-1)*y+y/2) creates
a rational function in the variables x and y whose coefficients involve the imaginary number i which is denoted by capital I in Maple.
This remainder of this file contains a list of operations which are available for rational functions. Note: many of the functions and operations described in the help page for polynom apply to the rational function case.
Utility Functions for Manipulating Rational Functions.
denom
extract the denominator of a rational function
normal
normal form for rational functions
numer
extract the numerator of a rational function
subs
evaluate a rational function
Mathematical Operations on Rational Functions.
asympt
asymptotic series expansion
diff
differentiate a rational function
int
integrate a rational function (indefinite/definite integration)
limit
compute a limit of a rational function
sum
sum a rational function (indefinite or definite summation)
series
general power series expansion
taylor
Taylor series expansion
Operations for Regrouping Terms of Rational Functions.
collect
group coefficients of like terms together
confrac
convert a series or rational function to a continued fraction
see convert[confrac]
horner
convert all polynomial sub-expressions to horner form
see convert[horner]
factor
factor the numerator and denominator
parfrac
partial fraction expansion of a rational function
see convert[parfrac]
ratpoly
convert a series to a rational function (Pade approximation)
see convert[ratpoly]
sort
sort all polynomial sub-expressions
The type function can be used to test for rational polynomials. For example the test type(a, ratpoly(integer, x)) tests whether the expression is a rational polynomial in the variable x with integer coefficients. See type[ratpoly] for further details.
See Also
convert, polynom, series, type, type[ratpoly]
Download Help Document