Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
numtheory[factorEQ] - integer factorization in Z(sqrt(d)) where Z(sqrt(d)) is a Euclidean ring
Calling Sequence
factorEQ(m, d)
Parameters
m
-
integer, list or set of integers in
d
integer where is a Euclidean ring
Description
The factorEQ function returns the integer factorization of m in the Euclidean ring .
Given integers and of , with , there is an integer such that , is true in . In these circumstances we say that there is a Euclidean algorithm in and that the ring is Euclidean.
Euclidean quadratic number fields have been completely determined. They are where d = -1, -2, -3, -7, -11, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, and 73.
When ,, all integers of have the form , where and are rational integers. When , all integers of are of the form where and are rational integers and of the same parity.
The answer is in the form: such that where are distinct prime factors of m, are non-negative integer numbers, is a unit in . For real Euclidean quadratic rings, i.e. d > 0, is represented under the form or or or where is the fundamental unit, and is a positive integer.
The expand function may be applied to cause the factors to be multiplied together again.
Examples
See Also
expand, GIfactor, ifactor, numtheory[sq2factor]
Download Help Document