Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
numapprox[chebyshev] - Chebyshev series expansion
Calling Sequence
chebyshev(f, x=a..b, eps)
chebyshev(f, x, eps)
chebyshev(f, a..b, eps)
Parameters
f
-
procedure or expression representing the function
x
variable name appearing in f, if f is an expression
a, b
numerical values specifying the interval of approximation
eps
(optional) numeric value
Description
This function computes the Chebyshev series expansion of f, with respect to the variable x on the interval , valid to accuracy eps.
If the second argument is simply a name x then the equation is implied.
If the second argument is a range then the first argument is assumed to be a Maple operator and the result will be returned as an operator. Otherwise, the first argument is assumed to be an expression and the result will be returned as an expression.
If the third argument eps is present then it specifies the desired accuracy; otherwise, the value used is . It is an error to specify eps less than 10^(-Digits).
The expression or operator f must evaluate to a numerical value when x takes on a numerical value. Moreover, it must represent a function which is analytic in a region surrounding the interval .
The resulting series is expressed in terms of the Chebyshev polynomials with floating-point series coefficients. If 'ser' is the Chebyshev series then conversion to ordinary polynomial form can be accomplished via eval(ser, T=orthopoly[T]).
The series computed is the ``infinite'' Chebyshev series, truncated by dropping all terms with coefficients smaller than eps multiplied by the largest coefficient.
Note: The name T used in representing the Chebyshev polynomials is a global name, so the user must ensure that this name has no previous value.
The command with(numapprox,chebyshev) allows the use of the abbreviated form of this command.
Examples
See Also
numapprox, orthopoly, series, taylor
Download Help Document