Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
linalg[smith] - compute the Smith normal form of a matrix
Calling Sequence
smith(A, x)
smith(A, x, U, V)
Parameters
A
-
square matrix of univariate polynomials in x
x
the variable name
U
name
V
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The Smith normal form of a matrix with univariate polynomial entries in x over a field F is computed. Thus the polynomials are then regarded as elements of the Euclidean domain F[x].
This routine is only as powerful as Maple's normal function, since at present it only understands the field Q of rational numbers and rational functions over Q.
The Smith normal form of a matrix is a diagonal matrix S obtained by doing elementary row and column operations. The diagonal entries satisfy the following property for all : is equal to the (monic) greatest common divisor of all n by n minors of A.
In the case of four arguments, the third argument U and the fourth argument V will be assigned the transformation matrices on output, such that smith(A) = U &* A &* V.
The command with(linalg,smith) allows the use of the abbreviated form of this command.
Examples
See Also
linalg(deprecated)[hermite], linalg(deprecated)[ismith], LinearAlgebra, LinearAlgebra[SmithForm], Smith
Download Help Document