Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Elliptic Integration
Elliptic integrals are of the form , where is a polynomial of degree 3 or 4, and and are polynomials.
Complete Elliptic Integrals
Maple recognizes the complete elliptic integrals
(First Kind)
(Second Kind)
(Third Kind)
where . We see this as follows:
First, we tell Maple that the usual parameter k lies between 0 and 1.
Now we evaluate the above integrals:
The tilde (~) following each k reminds us of the assumption of restricted range.
Maple can integrate the same type of integrals by using a hyperbolic trig argument. For instance, the integral
evaluates to:
As another example, to compute the value of the integral , we evaluate:
Elliptic Integration and assume
Because elliptic integration works for variable arguments that take advantage of the Maple assume facility, you can investigate formulae that cross branches of the square root function. The assumptions are the following:
Consider the following integral, . Evaluate and assign to answer1:
The next integral, , assigned to answer2, evaluates to
We can do a simple check for the integral directly above by trying some values. For example, try and .
Compute check - check2. This should evaluate to zero.
EllipticF, EllipticE, and EllipticPi
Integrals can be reduced to normal form in terms of the three Legendre elliptic functions: EllipticF, EllipticE, and EllipticPi. We begin by declaring some assumptions.
Firstly, the EllipticF function is given by .
Secondly, the EllipticE function has the form .
Thirdly, the EllipticPi function is of the form .
For all of the above functions, the variable k must lie between 0 and 1. The Maple integrator facility reduces
to a normal form expression. This can then be evaluated numerically to 30 (or more) digits.
Compare this to the Maple numerical integrator, and we see that the answers are the same (at least up to round errors).
In Maple, the integrator also recognizes the trigonometric form of these integrals:
, where is a rational function of sin and cos, and is a quadratic polynomial in sin and cos.
See Also
assume, int
Return to Index for Example Worksheets
Download Help Document