Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
evala/Norm - norm of an algebraic number (or function)
Calling Sequence
Norm(a, L, K)
Parameters
a
-
any expression
L
(optional) set of RootOfs
K
Description
The Norm function is a placeholder for representing the norm of an algebraic number (or function), that is the product of its conjugates. It is used in conjunction with evala.
The call evala(Norm(a, L, K)) computes the norm of a over the algebraic number (or function) field represented by K. In case K is not specified and a is an algebraic number, the norm over the rational is computed. In case K is not specified and a is an algebraic function, the smallest possible algebraic extension of the rational numbers is chosen. The expression a is viewed as an element of the smallest field containing a and the RootOfs in L.
The RootOfs in K must form a subset of the RootOfs occurring in L and in a. In other words, K must be a 'syntactic' subfield of the field generated by L and the RootOfs in a.
Examples
The name Norm must be global.
Error, (in Norm) expects its 1st argument, A, to be of type {Matrix, Vector}, but received z-RootOf(_Z^2-x+RootOf(_Z^2-2))
See Also
evala, LinearAlgebra[Norm], mod, norm, Normal, product, RootOf, VectorCalculus[Norm]
Download Help Document