Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
diff/x$n - compute a (partial) symbolic integer order derivative (or integral) of an expression
Calling Sequence
diff( f(x), x$n )
Parameters
f(x)
-
algebraic expression depending on x to be differentiated (or integrated)
x
name; differentiation (or integration) variable
n
symbol understood to be an integer representing the differentiation (or integration) order
Description
The diff( f(x), x$n ) calling sequence uses a database of core differentiation formulas, sum representations for functions, full partial fraction expansions, and tools from the gfun package, to compute formulas for the nth (integer order) derivative of a given expression. To compute derivatives of fractional order see fracdiff.
You can enter the command diff/x$n using either the 1-D or 2-D calling sequence. For example, diff(cos(x), x$n) is equivalent to .
To compute formulas for the nth integral, specify -n for the order, for instance as in (diff(expr, x$(-n)) - see example at the end of this page.
The environment variable _EnvFallingNotation allows you to select how "x to the n falling" is represented: x^falling(n) := x(x-1)(x-2)...(x-n+1) can be represented by the pochhammer symbol, GAMMA notation, or factorial notation. Each has some advantages. The default value is pochhammer.
Note: The diff implicitly assumes that n is an integer. Substitution of fractional values into the resulting formula will not compute fractional derivatives - for that purpose use fracdiff. Depending on the case, symbolic order differentiation can be a computationally expensive operation; uncomputed sums in the output are represented using Sum, not sum.
The Computational Approach
The expression is recursively examined for simple expressions. A direct formula for monomials of the form C*(x-a)^p is used when such patterns are matched in the input. Rational functions are converted to full partial fraction form.
When complicated terms are found in the input, a sequence of increasingly-powerful heuristics is tried: guessing a differential equation satisfied by the term, converting it to hypergeometric form, or converting it to Sum form by means of the built-in functional database.
Examples
Compute the nth derivative of cos(x).
Compare with the result obtained by direct differentiation.
A basic formula: symbolic derivative of a monomial:
Use a different notation for the "falling" function:
A more difficult function:
See Also
convert/fullparfrac, convert/parfrac, D, diff, eval, evalf, fdiff, fracdiff, int, Sum or sum
References
Benghorbal, Mhenni, and Corless, Robert M. "The nth derivative." SIGSAM Bull (Communications in Computer Algebra). Vol. 36 No. 1, (2002): 10-14. http://doi.acm.org/10.1145/565145.565149
Download Help Document