Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
convert/confrac - convert to continued-fraction form
Calling Sequence
convert(expr, confrac)
convert(expr, confrac, maxit)
convert(expr, confrac, 'cvgts' )
convert(expr, confrac, maxit, 'cvgts')
convert(expr, confrac, 'subdiagonal')
convert(expr, confrac, var)
convert(expr, confrac, var, ctype)
convert(expr, confrac, var, order)
convert(expr, confrac, var, order, 'subdiagonal')
Parameters
expr
-
algebraic expression
maxit
(optional) non-negative integer
cvgts
(optional) name
var
(optional) variable
ctype
(optional) one of 'monic', 'regular', or 'simple'. The default is 'monic'.
order
Description
The convert(expr, confrac) command converts a number, series, rational function, or other algebraic expression to a continued-fraction approximation.
If expr is numeric then maxit (optional) is the maximum number of partial quotients to be computed, and cvgts (optional) will be assigned a list of the convergents. A list of the partial quotients is returned as the function value.
If expr is a series and no additional arguments are specified, a continued-fraction approximation (to the order of the series) is computed. It is equivalent to either an or Pade approximant (depending on the parity of the order). By specifying 'subdiagonal' as an optional third argument, the continued-fraction computed will be equivalent to a or Pade approximant.
If expr is a ratpoly (quotient of polynomials) in x, the calling sequence is convert(expr, confrac, x). The rational form is converted into its associated continued-fraction form as required for efficient evaluation of numerical subroutines.
If expr is any other algebraic expression, the third argument specifies a variable and (optionally) the fourth argument specifies order. The series function is applied to the arguments to obtain a series and then case series applies.
By default, a rational polynomial is converted to a monic continued fraction, that is, one with monic polynomials in the non-fractional part of the denominator. If the option regular or simple is specified then a regular or a simple continued fraction is returned, respectively.
Otherwise, `convert/confrac` is applied to each component of a non-algebraic structure.
For information on the inverse transformation, see numtheory[cfrac].
Compatibility
The option subdiagonal can be used together with the optional argument var as of Maple 16.
The subdiagonal option was updated in Maple 16.
Examples
See Also
convert/ratpoly, numtheory[cfrac]
Download Help Document