Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
algcurves[differentials] - Holomorphic differentials of an algebraic curve
Calling Sequence
differentials(f, x, y, opt)
Parameters
f
-
irreducible polynomial in x and y
x
variable
y
opt
optional argument to change the form of the output
Description
This command computes a basis of the holomorphic differentials of an irreducible algebraic curve f. Every holomorphic differential is of the form where is a polynomial in x,y of degree . Here is the degree of the curve.
If f is irreducible, then the dimension of the holomorphic differentials equals the genus of the curve; in other words, nops(differentials(f,x,y)) = genus(f,x,y).
If f has no singularities, then can be any polynomial in x,y of degree . So then the genus equals the number of monomials in x,y of degree , which is .
For a singular curve, each singularity poses delta (the delta-invariant) independent linear conditions on the coefficients of . So the genus equals minus the sum of the delta-invariants. If where m is the multiplicity of the singularity, then the linear conditions are equivalent with vanishing with multiplicity m-1 at that singularity. If , then additional linear conditions exist, which are computed using integral_basis.
The output of this command will be a basis for all , or a basis for all , in case a fourth argument skip_dx is given.
Examples
See Also
AIrreduc, algcurves[genus], algcurves[singularities]
Download Help Document