Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SNAP[QuasiGCD] - compute Schoenhage's quasi-GCD for a pair of univariate numeric polynomials
Calling Sequence
QuasiGCD(a, b, z, tau = eta)
Parameters
a, b
-
univariate numeric polynomials
z
name; indeterminate for a and b
tau = eta
(optional) equation where eta is of type numeric and non-negative; stability parameter
Description
The QuasiGCD(a, b, z) command returns a univariate numeric polynomial g with a positive float eta such that g is a quasi-GCD with precision eta for the input polynomials (a,b). (See [3,2] for a definition of a quasi-GCD in the sense of Schoenhage.)
This quasi-GCD g is derived from the stable algorithm of [2] as follows. The algorithm of [2] computes a numerical pseudo remainder sequence (ai,bi) for (a,b) in a weakly stable way, accepting only the pairs that are well-conditioned (because the others produce instability). The maximum index i for which (ai,bi) is accepted yields the quasi-GCD g=ai provided the 1-norm of bi is small enough in a sense precised in [2]. The value of eta depends in particular on the value of bi and on the 1-norm of the residual error at the last accepted step.
If the problem is poorly conditioned, the QuasiGCD(a, b, z) command may return FAIL (rather than a meaningless answer). Here, ill-conditioning is a function of the parameter tau. Its default value is the cubic root of the current value of the Digits variable. Decreasing the value of tau yields a more reliable solution. Increasing the value of tau reduces the risk of failure.
Examples
See Also
SNAP[DistanceToCommonDivisors], SNAP[EpsilonGCD]
References
Beckermann, B., and Labahn, G. "A fast and numerically stable Euclidean-like algorithm for detecting relatively prime numerical polynomials." Journal of Symbolic Computation. Vol. 26, (1998): 691-714.
Beckermann, B., and Labahn, G. "When are two numerical polynomials relatively prime?" Journal of Symbolic Computation. Vol. 26, (1998): 677-689.
Schoenhage, A. "Quasi-GCD computations" Journal of Complexity. Vol. 1, (1985): 118-137.
Download Help Document