Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RationalNormalForms[RationalCanonicalForm] - construct the first and second rational canonical forms of a rational function
Calling Sequence
RationalCanonicalForm[1](F, x)
RationalCanonicalForm[2](F, x)
Parameters
F
-
rational function in x
x
variable
Description
The RationalCanonicalForm[1](F,x) and RationalCanonicalForm[2](F,x) functions construct the first and second rational canonical forms for F, where F is a rational function in x over a field of characteristic , respectively.
If RationalCanonicalForm is called without any indexing, the first rational canonical form is used.
A sequence of five elements , where z is an element in K and are monic polynomials over K such that the following three conditions are satisfied, is returned:
.
for all integers k.
, .
Note: E is the automorphism of K(x) defined by .
The five-tuple that satisfies the three conditions is a strict rational normal form for F. It is a normal form, not a canonical form. See the References section for information about definitions and constructions of the first and second rational canonical forms.
This function is part of the RationalNormalForms package, and so it can be used in the form RationalCanonicalForm(..) only after executing the command with(RationalNormalForms). However, it can always be accessed through the long form of the command by using RationalNormalForms[RationalCanonicalForm](..).
Examples
Check the result from RationalCanonicalForm[1].
Condition 1:
Condition 2:
Condition 3:
See Also
RationalNormalForms[PolynomialNormalForm]
References
Abramov, S., and Petkovsek, M. "Canonical Representations of Hypergeometric Terms." FPSAC'01. 2000.
Download Help Document