Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
QDifferenceEquations[QPochhammer] - q-Pochhammer symbol
QDifferenceEquations[QBinomial] - q-binomial coefficient
QDifferenceEquations[QBrackets] - q-brackets
QDifferenceEquations[QFactorial] - q-factorial
QDifferenceEquations[QGAMMA] - q-Gamma
Calling Sequence
QPochhammer(a, q, infinity)
QPochhammer(a, q, k)
QBinomial(n, k, q)
QBrackets(k, q)
QFactorial(k, q)
QGAMMA(a, q)
Parameters
a
-
algebraic expression
q
name used as the parameter q, or an integer power of a name
k
symbolic integer value
n
Description
The QDifferenceEquations package supports five q-hypergeometric terms. They are q-Pochhammer symbol, q-binomial coefficient, q-brackets, q-factorial, and q-Gamma, which correspond to the five functions QPochhammer, QBinomial, QBrackets, QFactorial, and QGAMMA.
These functions are place holders for the q-objects. The command expand allows expansion of these objects. The command allows the re-write of QBinomial, QBrackets, QFactorial, and QGAMMA in terms of QPochhammer symbols.
The five q-hypergeometric objects are defined as follows.
Note that (the compact Gasper and Rahman notation) means .
The commands QSimpComb and QSimplify are for simplification of expressions involving these q-objects.
This implementation is mainly based on the implementation by H. Boeing, W. Koepf. See the References section.
Examples
Compute the certificate of H (which is a rational function in ):
See Also
QDifferenceEquations[IsQHypergeometricTerm], QDifferenceEquations[QSimpComb]
References
Boeing, H., and Koepf, W. "Algorithms for q-hypergeometric summation in computer algebra." Journal of Symbolic Computation. Vol. 11. (1999): 1-23.
Download Help Document