Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
ProbSplit - probabilistic splitting of same degree factors
Calling Sequence
ProbSplit(a, d, x, K) mod p
Parameters
a
-
univariate polynomial in x
d
positive integer
x
name
K
(optional) RootOf
p
prime integer
Description
ProbSplit factors a monic square-free univariate polynomial over a finite field where it is known to contain factors of degree d only. The factorization is returned as a set of irreducible factors.
This function is normally used with the DistDeg function which is used to split a polynomial into factors which contain factors of the same degree. The ProbSplit function can then be applied to split those factors.
This function can also be used to compute the roots of a polynomial over a large finite field efficiently. If a is square-free, p>2, then the product of linear factors g dividing a is given by . The quantity can be computed using efficiently for large p using . Applying ProbSplit(g, 1, x) mod p splits g into linear factors, hence obtaining the roots of a.
The optional argument K specifies an extension field over which the factorization is to be done. See Factor for further information. Note: only the case of a single field extension is implemented.
Algorithm: a probabilistic method of Cantor-Zassenhaus is used to try to split the polynomial a of degree n into m=(n/d) factors of degree d. The average complexity is assuming classical algorithms for polynomial arithmetic.
Examples
Factor the square-free polynomial a over GF(2)
This tells us that there are two linear factors, and one quartic factor. To complete the factorization we split the quadratic factor
Compute the roots of x^4-2=0 mod 10^10-33
See Also
DistDeg, Factor, Factors, RootOf, Sqrfree
References
Cantor, D. G., and Zassenhaus, H. "A New Algorithm for Factoring Polynomials over a Finite Field." Mathematics of Computation, Vol. 36, (1981): 587-592.
Geddes, K. O.; Labahn, G.; and Czapor, S. R. Algorithms for Computer Algebra. Kluwer Academic Publishers, 1992.
Download Help Document