Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PolynomialIdeals[IdealMembership] - test for ideal membership
PolynomialIdeals[IdealContainment] - test for ideal containment
Calling Sequence
IdealMembership(f, J)
IdealContainment(J, K, ...)
f in J
J subset K
Parameters
f
-
polynomial, or list or set of polynomials
J, K
polynomial ideals
Description
The IdealMembership command tests elements for membership in an ideal. If the first argument is a list or set of polynomials, IdealMembership returns true if and only if all of the elements are members of the ideal. The criterion for ideal membership is Groebner[NormalForm](f, J) = 0.
The IdealContainment command tests whether ideals are contained within one another, and can test sequences of containments from left to right. It returns true if and only if all containments are valid. For example, IdealContainment(J, K, L) tests whether J is contained in K and K is contained in L.
A particularly useful form of the IdealContainment command is IdealContainment(J, K, J), which tests whether the ideals J and K are equal.
The functionality of these commands is also available through the in and subset operators, see PolynomialIdeals[Operators] for more information.
Examples
See Also
expand, Groebner[Basis], Groebner[NormalForm], PolynomialIdeals, PolynomialIdeals[Operators]
Download Help Document