Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Conversions between diff, D, and Physics[diff] - convert derivatives between the diff and D notations
Calling Sequence
convert(expr, diff)
convert(expr, D)
Parameters
expr
-
any valid Maple object
Description
The Physics package provides a framework for computing with commutative, anticommutative, and noncommutative objects at the same time. Accordingly, it is possible to differentiate with respect to anticommutative variables; the command used to perform these derivatives is Physics[diff] (herein referred to as diff).
convert/D and convert/diff are converter routines between the D and diff formats for representing derivatives. The equivalence for anticommutative high order derivatives written in the D format and diff format of the Physics package is as in:
Physics[diff](f(theta1,theta2),theta1,theta2) = D[1,2](f)(theta1,theta2);
where the derivative above should be interpreted as: first differentiate with respect to , then with respect to (or the opposite times ). Thus, in this case, the right hand side should not be interpreted as usual, that is, as a commutative higher order derivative.
Examples
Load the Physics package and set a prefix to identify anticommutative variables (see Setup for more information).
Consider a commutative function depending on commutative and anticommutative variables, and one higher order derivative of it.
Note in the above that the commutative differentiation variables are collected as a group to be applied first, then the anticommutative ones.
Physics:-diff(Physics:-diff(Physics:-diff(diff(diff(diff(f(x, y, z, theta1, theta2, theta3), x), y), z), theta1), theta2), theta3)
Rewrite this expression in D notation, then convert back to diff notation.
See Also
convert/D, convert/diff, D, diff, Physics, Physics conventions, Physics examples, Setup
Download Help Document