Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LagrangeBasis - Lagrange polynomials on a set of nodes
Calling Sequence
LagrangeBasis(k, nodes, x)
Parameters
k
-
algebraic expression; the index
nodes
list of algebraic expressions; the nodes where the polynomial is known
x
algebraic expression; the argument
Description
LagrangeBasis(k,nodes,x) = w[k]*prod(x-nodes[j], j<>k) defines the th Lagrange polynomial of degree which is either or on the given nodes. By convention, the nodes are indexed from , so , and the barycentric weights are defined as .
At present, this can only be evaluated in Maple by prior use of the object-oriented representation obtained by and subsequent call to , which uses the numerically stable barycentric form to evaluate the polynomial .
Examples
That polynomial has the value 3 at , the value 0 at , the value 5 at , and the value 7 at .
Note that the result returned by represents a matrix polynomial; hence these results are 1 by 1 matrices.
See Also
BernsteinBasis, convert,MatrixPolynomialObject, LinearAlgebra[CompanionMatrix], NewtonBasis, OrthogonalSeries, PochhammerBasis, type,MatrixPolynomialObject
Download Help Document