Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Irreduc - inert irreducibility function
Calling Sequence
Irreduc(a)
Irreduc(a, K)
Parameters
a
-
multivariate polynomial
K
RootOf
Description
The Irreduc function is a placeholder for testing the irreducibility of the multivariate polynomial a. It is used in conjunction with mod and modp1.
Formally, an element a of a commutative ring R is said to be "irreducible" if it is not zero, not a unit, and implies either b or c is a unit.
In this context where R is the ring of polynomials over the integers mod p, which is a finite field, the units are the non-zero constant polynomials. Hence all constant polynomials are not irreducible by this definition.
The call Irreduc(a) mod p returns true iff a is "irreducible" modulo p. The polynomial a must have rational coefficients or coefficients from a finite field specified by RootOf expressions.
The call Irreduc(a, K) mod p returns true iff a is "irreducible" modulo p over the finite field defined by K, an algebraic extension of the integers mod p where K is a RootOf.
The call modp1(Irreduc(a), p) returns true iff a is "irreducible" modulo p. The polynomial a must be in the modp1 representation.
Examples
See Also
AIrreduc, Factor, irreduc, isprime, mod, modp1, RootOf
Download Help Document