Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Finance[VasicekModel] - define Vasicek interest rate model
Calling Sequence
VasicekModel(, mu, theta, sigma)
Parameters
-
non-negative constant; initial interest rate
mu
non-negative constant; long-running mean
theta
non-negative constant; speed of mean reversion
sigma
non-negative constant; volatility parameter
Description
The VasicekModel command creates a Vasicek model with the specified parameters. Under this model the short-rate process has the following dynamics with respect to the objective measure
where , , , and are non-negative constants.
Compatibility
The Finance[VasicekModel] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
First define a Vasicek model with parameters , , and .
The following is the corresponding stochastic process.
Here is the corresponding short-rate tree.
See Also
Finance[BlackScholesProcess], Finance[CoxIngersollRossModel], Finance[HullWhiteModel], Finance[OrnsteinUhlenbeckProcess], Finance[PathGenerator], Finance[SamplePath], Finance[ShortRateProcess], Finance[ShortRateTree]
References
Brigo, D., Mercurio, F., Interest Rate Models: Theory and Practice, New York: Springer-Verlag, 2001.
Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Vasicek, O.A., An Equilibrium Characterization of the Term Structure, Journal of Financial Economics, 5 (1977), pp 177-188.
Download Help Document