Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Ei - The Exponential Integral
Calling Sequence
Ei(z)
Ei(a, z)
Parameters
z
-
algebraic expression
a
Description
The exponential integrals, Ei(a, z), are defined for by
Ei(a, z) = convert(Ei(a, z), Int) assuming Re(z) > 0;
This classical definition is extended by analytic continuation to the entire complex plane using
Ei(a, z) = z^(a-1)*GAMMA(1-a, z);
with the exception of the point 0 in the case of .
For all of these functions, 0 is a branch point and the negative real axis is the branch cut. The values on the branch cut are assigned such that the functions are continuous in the direction of increasing argument (equivalently, from above).
The classical definition for the 1-argument exponential integral is a Cauchy Principal Value integral, defined for real arguments x, as the following
convert(Ei(x),Int) assuming x::real;
value((3));
for , . This classical definition is extended to the entire complex plane using
Note that this extension has its branch cut on the negative real axis, but unlike for the 2-argument functions this extension is not continuous onto the branch cut from either above or below. That is, this extension provides an analytic continuation of from the positive real axis, but not in any direction from the negative real axis. If you want a continuation from the negative real axis, use in place of .
Examples
See Also
Ci, convert, expand, inifcns, int, Li, simplify
References
Abramowitz, M. and Stegun, I. Handbook of Mathematical Functions. New York: Dover Publications Inc., 1965.
Download Help Document