Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DistDeg - distinct degree factorization
Calling Sequence
DistDeg(a, x) mod p
DistDeg(a, x, K) mod p
Parameters
a
-
univariate polynomial in x
x
name
K
RootOf
p
prime integer
Description
This function computes the distinct degree factorization of a monic square-free univariate polynomial over a finite field. The factorization is returned as a list of pairs of the form where and each is a product of irreducible factors of degree .
If the user needs to factor a polynomial which is not monic and square-free, i.e. the leading coefficient is not 1, or there are repeated factors, then the user should apply the Sqrfree function first. Note, the condition that a polynomial be square-free is .
The Split function can be applied to the resulting factors of DistDeg to split them into irreducible factors.
The optional argument K specifies an extension field over which the factorization is to be done. See Factor for further information. Note: only the case of a single field extension is implemented.
Algorithm: The algorithm used is the Cantor-Zassenhaus distinct degree factorization. The average case complexity depends on the number of factors. If the polynomial is irreducible, the complexity is arithmetic operations in GF(p^k) assuming the use of classical algorithms for polynomial arithmetic. If there are many factors the complexity improves to in the best case.
Implementation: The implementation for the case GF(p) is largely in C. See the modp1 package for details. For the case GF(p^k), the implementation is in Maple but arithmetic in GF(p^k) is done largely in C using the modp1 package.
Examples
See Also
Berlekamp, Factor, Factors, ProbSplit, RootOf, Sqrfree
References
Cantor, D.G., and Zassenhaus, H. "A New Algorithm for Factoring Polynomials over a Finite Field." Mathematics of Computation, (1981): 587-592.
Geddes, K.O.; Czapor, S.R.; and Labahn, G. Algorithms for Computer Algebra. Kluwer Academic Publishers, 1992.
Download Help Document