Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[SpinorInnerProduct] - calculate the inner product of 2 spinors
Calling Sequences
SpinorInnerProduct(S, T)
Parameters
S, T - two spinors or spinor-tensors of the same spinor type
Description
The spinor inner product of two spinors S and T of the same type is calculated by contracting each pair of corresponding spinor indices (one from S and one from T) with the appropriate epsilon spinor.
For example, the inner product of two covariant rank 1 spinors with components S_A and T_B is epsilon^{AB} S_A T_B. The inner product of two contravariant rank 1 spinors with components S^A and T^B is epsilon_{AB} S^A T^B. The inner product of two contravariant rank 2 spinors with components S_{AX} and T_{BY} is epsilon^{AB} epsilon^{XY} S_{AX} T_{BY}.
If S and T are odd rank spinors, then SpinorInnerProduct(S, T) = -SpinorInnerProduct(T, S) and therefore SpinorInnerProduct(S, S) = 0. (Strictly speaking, the spinor inner product is really just a bilinear pairing -- it is not a true inner product because it is not always symmetric in its arguments.)
If S and T are even rank spinors, then SpinorInnerProduct(S, T) = SpinorInnerProduct(T, S).
Unlike TensorInnerProduct, SpinorInnerProduct does not require specification of a metric tensor to perform the contractions.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SpinorInnerProduct(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-SpinorInnerProduct.
Examples
Example 1.
First create a vector bundle M with base coordinates [x, y, z, t] and fiber coordinates [z1, z2, w1, w2].
Define rank 1 spinors S1 and T1 and calculate their inner product.
Note the sign change:
The inner product of a rank 1 spinor with itself vanishes
Calculate the inner product of S1 and T1 from the definition.
Example 2.
Calculate the inner product of two rank 2 spinors S2 and T2.
Example 3.
Calculate the inner product of two rank 2 spinor-tensors S3 and T3. Note that in this example the result is a rank 2 tensor.
See Also
DifferentialGeometry, Tensor, ContractIndices, EpsilonSpinor, RaiseLowerSpinorIndices, SpacetimeConventions, TensorInnerProduct
Download Help Document