Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[RootSpace] - find a root space for a semi-simple Lie algebra from a Cartan subalgebra or a root space decomposition
Calling Sequences
RootSpace()
Parameters
RV - a column vector
CSA - a list of vectors in a semi-simple Lie algebra, defining a Cartan subalgebra
RSD - a table, defining a root space decomposition of a semi-simple Lie algebra
Description
Let g be a Lie algebra and h a Cartan subalgebra. Let be a basis for . A root for g with respect to this basis is a non-zero -tuple of complex numbers such that (*) for some .
The set of which satisfy (*) is called the root space of g defined by and denoted by A basic theorem in the structure theorem of semi-simple Lie algebras asserts that the root spaces are 1-dimensional.
The first call sequence calculates the root space for a given root. If is not a root, then the zero vector (in ) is returned.
The second calling sequence simply returns the table entry in the table of root spaces corresponding to the root .
Examples
Example 1.
Use the command SimpleLieAlgebraData to obtain the Lie algebra data for the simple Lie algebra This is the 15-dimensional Lie algebra of trace-free, skew-Hermitian matrices.
Initialize the Lie algebra
The command StandardRepresentation will produce the actual matrices defining . (This command only applies to Lie algebras constructed by the procedure.)
The Lie algebra elements corresponding to the complex diagonal matrices define a Cartan subalgebra.
We check this is indeed a Cartan subalgebra using the Query command
Here is the root space corresponding to the root <I, I, -I>.
We check that the X is an eigenvector for the elements of the Cartan subalgebra.
The column vector <I, I, I> is not a root
Example 2.
Here is the full root space decomposition for the Lie algebra from Example 1.
The second calling sequence for simply converts the given root vector to a list and extracts the corresponding root space from the root space decomposition table.
See Also
DifferentialGeometry, CartanSubalgebra, GetComponents, Query, RootSpaceDecomposition, SimpleLieAlgebraData, SimpleLieAlgebraProperties, StandardRepresentation
Download Help Document