Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialAlgebra[Tools][DifferentialPrem] - the Ritt reduction algorithm
Calling Sequence
DifferentialPrem (p,regchain,opts)
DifferentialPrem (p,redset,R,opts)
Parameters
p
-
a differential polynomial
regchain
a regular differential chain
redset
a polynomial or a list or a set of differential polynomials
opts (optional)
a sequence of options
Description
The function call DifferentialPrem (p,regchain) returns a sequence such that is a power product of initials and separants of regchain, is a differential polynomial fully reduced (see below) with respect to regchain, and, modulo the differential ideal generated by the regular differential chain.
The function call DifferentialPrem (p,redset,R,opts) returns a sequence such that is a power product of initials and separants of redset, is a differential polynomial fully reduced with respect to each element of redset, and, modulo the differential ideal generated by redset. The elements of redset must depend on at least, one derivative and have integer coefficients. All the differential polynomials are regarded as elements of R, or, of its embedding ring, if R is an ideal.
A differential polynomial p belongs to the differential ideal defined by regchain if and only if, the function call DifferentialPrem (p,regchain) returns a sequence whose second component is zero.
This command is part of the DifferentialAlgebra:-Tools package. It can be called using the form DifferentialPrem(...) after executing the command with(DifferentialAlgebra:-Tools). It can also be directly called using the form DifferentialAlgebra[Tools][DifferentialPrem](...).
Options
The opts arguments may contain one or more of the options below.
reduction = full, partial or algebraic. Indicates the type of reduction to be performed. Depending on the type of reduction, the differential polynomial satisfies the following properties:
algebraic. For each leading rank of regchain, or, of redset, has degree less than in .
partial. For each leading derivative of regchain, or, of redset, no proper derivative of occurs in .
full. For each leading rank of regchain, or, of redset, no proper derivative of occurs in , and, moreover, has degree less than in .
notation = jet, tjet, diff or Diff. Specifies the notation used for the result of the function call. If not specified, the notation of p is used.
memout = nonnegative. Specifies a memory limit, in MB, for the computation. Default is zero (no memory out).
Examples
The ratio / is equivalent to modulo the differential ideal defined by the regular differential chain, but, it is not the normal form of
Different modes of reduction are available
See Also
DifferentialAlgebra, LeadingDerivative, LeadingRank, NormalForm, BelongsTo
Download Help Document