Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
convert/MatrixPolynomialObject - convert a matrix polynomial or scalar polynomial to a standard internal representation
type/MatrixPolynomialObject - test for a MatrixPolynomialObject
Calling Sequence
convert(p, MatrixPolynomialObject, x)
convert(values, MatrixPolynomialObject, nodes)
type(expr, MatrixPolynomialObject, x)
Parameters
p
-
polynomial expressed in any of a number of polynomial bases
x
name; the variable for the polynomial
values
list of values of the (matrix or scalar) polynomial p at the (distinct) nodes
nodes
list of algebraic expressions representing distinct scalar nodes
expr
arbitrary Maple object
Description
The convert(p, MatrixPolynomialObject, x) function converts the (matrix or scalar) polynomial p into a standard representation, a Record. This allows systematic (conventional) access to the polynomial properties, such as Degree, in a manner independent of the polynomial basis. The bases understood by MatrixPolynomialObject include:
BernsteinBasis
ChebyshevT
ChebyshevU
GegenbauerC
JacobiP
LagrangeBasis
NewtonBasis
PochhammerBasis
and most others understood by the OrthogonalSeries package. This routine is used internally by LinearAlgebra[CompanionMatrix].
If the input polynomial p contains more than one basis, then this (heuristic) conversion will fail.
The type(expr, MatrixPolynomialObject) function checks whether expr is a Record of the type returned by convert(...,MatrixPolynomialObject).
A MatrixPolynomialObject record has the following fields:
Basis - the name of the basis used; either PowerBasis or any of the supported basis names listed above.
BasisParameters - a list of the parameters of the particular basis; e.g. for LagrangeBasis or NewtonBasis these are the nodes; for BernsteinBasis these are the degree n and the left and right ends a and b of the interval.
Coefficient - a procedure to return a specific coefficient matrix. It takes as argument a nonnegative integer less or equal to Degree and returns a Matrix.
Degree - a nonnegative integer; the degree of the polynomial (in the LagrangeBasis or BernsteinBasis case, an upper bound on the degree).
Dimension - a positive integer; the matrix dimension of the matrix polynomial ( if the original polynomial is a scalar polynomial).
IsMonic - a procedure without arguments returning true or false, depending on whether the polynomial is known to be monic (not relevant for Lagrange or Bernstein bases).
OutputOptions - a list of output options for the coefficient Matrices (see MatrixOptions).
Value - a procedure to evaluate the polynomial at any point. It takes as an argument the point (an algebraic expression) and returns a Matrix.
Variable - a name; the original variable used to define the polynomial (which may be unspecified in the LagrangeBasis case).
Examples
Lagrange basis.
Bernstein Basis: note that the zeros of p are the eigenvalues of the companion matrix pencil of p.
A matrix polynomial example.
See Also
BernsteinBasis, ChebyshevT, ChebyshevU, GegenbauerC, JacobiP, LagrangeBasis, LinearAlgebra[CompanionMatrix], Matrix, NewtonBasis, OrthogonalSeries, PochhammerBasis, Record
Download Help Document