Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Harmonic Oscillator
1. System Definition
2. Design of a P controller
3. Design of a PI controller
4. Design of a PID controller
The model of a harmonic oscillator corresponds to a second order system with as the input and as the output. The system is defined by the angular frequency , the attenuation , and the gain .s
Parameters
Variables
Attenuation
Input
Angular frequency
Output
Gain
The system is defined with the following differential equation
The transfer function that results from this differential equation can be obtained using the DynamicSystems[TransferFunction] command.
The step response for the corresponding system can be observed by changing the slider values for θ and ω in the following application.
In this example, controls the damping, such that a system with results in a system that is under damped and results in an overshoot. For the cases with the system is over damped and the response has no overshoot. If the system is critically damped, resulting in the fastest rise time of the system without overshooting the final value. The parameter is the natural frequency of the system.
The amplitude is set to 1 for this example.
Uncontrolled Step Response
set value
The response to the system to chaging proportional gain controller can be seen below. It is important to note that the P controller is not able to get the system to actually reach the desired final value. The controller has an offset error.
Controlled Step Response - P controller
value
The effects of adjusting the proportional controller gain and integral controller gain values is displayed below. In most cases, the offset error can be eliminated by adding an integral component to the proportional controller.
It is important to note, that a system may become unstable and begin to oscillate out of control if the value of is too small and the value of to large.
Controlled Step Response - PI controller
The system response to changes in the proportional, integral and derivative gains are shown below.
Controlled Step Response - PID controller
Download Help Document