Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Functions Known to evalc
Description
The following functions are known to evalc, in the sense that their real and imaginary parts are known for all complex arguments in their domains.
sin
cos
tan
csc
sec
cot
sinh
cosh
tanh
csch
sech
coth
arcsin
arccos
arctan
arccsc
arcsec
arccot
arcsinh
arccosh
arctanh
arccsch
arcsech
arccoth
exp
ln
sqrt
`^`
abs
conjugate
polar
argument
signum
csgn
Re
Im
The following functions are partially known to evalc, in the sense that their real and imaginary parts are known for some complex arguments in their domains, and/or it is known that the functions are not real valued everywhere on the real line.
Ei
LambertW
Psi
dilog
surd
Ci
Si
Chi
Shi
Ssi
If evalc is applied to an expression involving RootOfs of polynomials, the polynomials are split into pairs of polynomials whose roots include the real and imaginary parts of the roots of the original polynomials.
If evalc is applied to an expression involving ints (or sums), each such integral (or sum) are split into two integrals (or sums) of real functions, giving the real and imaginary parts of the original integrals (or sums).
evalc assumes that all variables represent real-valued quantities. evalc further assumes that unknown functions of real variables are real valued.
See Also
evalc
Download Help Document