Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PolynomialTools[MinimalPolynomial] - find minimal polynomial for an approximate root
Calling Sequence
MinimalPolynomial(r, n, acc)
Parameters
r
-
approximate root
n
degree of the polynomial sought
acc
(optional) desired accuracy of the approximation
Description
The MinimalPolynomial(r, n) function uses the lattice algorithm to find a polynomial of degree n (or less) with small integer coefficients which has the given approximation r of an algebraic number as one of its roots.
The root r may be real or complex. It may be input as a floating-point approximation to a root or as an exact algebraic number. In the latter case, it will first be evaluated in floating point at Digits precision. Note that this procedure is intended for approximate inputs, because if r is an exact algebraic number then the minimum polynomial can be found with the command evala(Norm(_X-r)), where r is in RootOf notation.
If a third argument is specified, then the value is given the same weight as the coefficients in determining the polynomial. The default value for acc is 10^(Digits-2).
This function is part of the PolynomialTools package, and so it can be used in the form MinimalPolynomial(..) only after executing the command with(PolynomialTools). However, it can always be accessed through the long form of the command by using PolynomialTools[MinimalPolynomial](..).
Examples
The minimum polynomial of the exact expression s can be determined by:
See Also
evala/Norm, IntegerRelations[LLL], LinearAlgebra[MinimalPolynomial]
Download Help Document