MeijerG - Meijer G function
|
Calling Sequence
|
|
MeijerG([as, bs], [cs, ds], z)
|
|
Parameters
|
|
as
|
-
|
list of the form [a1, ..., am]; first group of numerator parameters
|
bs
|
-
|
list of the form [b1, ..., bn]; first group of denominator parameters
|
cs
|
-
|
list of the form [c1, ..., cp]; second group of numerator parameters
|
ds
|
-
|
list of the form [d1, ..., dq]; second group of denominator parameters
|
z
|
-
|
expression
|
|
|
|
|
Description
|
|
•
|
The Meijer G function is defined by the inverse Laplace transform
|
•
|
The classical notation used to represent the MeijerG function relates to the notation used in Maple by
|
|
Note: See Prudnikov, Brychkov, and Marichev.
|
|
The MeijerG function satisfies the following th-order linear differential equation
|
|
where and p is less than or equal to q.
|
|
|
Examples
|
|
>
|
|
| (1) |
>
|
|
| (2) |
>
|
|
| (3) |
>
|
|
| (4) |
>
|
|
| (5) |
>
|
|
| (6) |
>
|
|
| (7) |
>
|
|
| (8) |
|
|
References
|
|
|
Prudnikov, A. P.; Brychkov, Yu; and Marichev, O. Integrals and Series, Volume 3: More Special Functions. New York: Gordon and Breach Science Publishers, 1990.
|
|
|
Download Help Document
Was this information helpful?