Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearAlgebra[Modular][MatGcd] - compute mod m GCD from Matrix of coefficients
Calling Sequence
MatGcd(m, A, nrow)
Parameters
m
-
modulus
A
mod m Matrix; each row stores the coefficients of a polynomial
nrow
number of rows in A containing polynomial coefficients
Description
The MatGcd function computes the GCD of the nrow polynomials formed by multiplication of the input Matrix A by the Vector . It is capable of computing the mod m GCD of more than two polynomials simultaneously.
Each polynomial must be stored in a row of the input Matrix, in order of increasing degree for the columns. For example, the polynomial is stored in a row as [3, 2, 1].
On successful completion, the degree of the GCD is returned, and the coefficients of the GCD are returned in the first row of A.
Note: The returned GCD is not normalized to the leading coefficient 1, as the leading coefficient is required for some modular reconstruction techniques.
This command is part of the LinearAlgebra[Modular] package, so it can be used in the form MatGcd(..) only after executing the command with(LinearAlgebra[Modular]). However, it can always be used in the form LinearAlgebra[Modular][MatGcd](..).
Examples
An example of three polynomials with a known GCD.
An example of a trivial GCD.
See Also
coeff, Expand, LinearAlgebra/Details, LinearAlgebra[Modular], LinearAlgebra[Modular][Mod], randpoly, seq, trunc
Download Help Document