Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
EllipticF - Incomplete elliptic integral of the first kind
EllipticK - Complete elliptic integral of the first kind
EllipticCK - Complementary complete elliptic integral of the first kind
Calling Sequence
EllipticF(z, k)
EllipticK(k)
EllipticCK(k)
Parameters
z
-
algebraic expression (the sine of the amplitude)
k
algebraic expression (the parameter)
Description
EllipticF is the Incomplete Elliptic integral of the first kind and is defined by
FunctionAdvisor(definition, EllipticF);
EllipticK and EllipticCK are respectively the Complete and the Complementary Elliptic integrals of the first kind and are defined by
FunctionAdvisor( definition, EllipticK);
FunctionAdvisor( definition, EllipticCK);
EllipticK, EllipticCK and EllipticF are related by
FunctionAdvisor( relate, EllipticK,EllipticF);
FunctionAdvisor( relate, EllipticK,EllipticCK);
EllipticF is also identical to the InverseJacobiSN function
FunctionAdvisor(relate, EllipticF, InverseJacobiSN);
and therefore can be used to represent all the InverseJacobiPQ functions provided some restrictions on the function parameters hold.
Elliptic integrals and the related functions are well described in the Table of Integrals Series and Products, Gradshteyn and Ryzhik (G&R) and in the popular Handbook of Mathematical Functions edited by Abramowitz and Stegun (A&S). In A&S, these functions are expressed in terms of a parameter m, representing the square of the modulus k entering the definition of the Elliptic, JacobiPQ and InverseJacobiPQ functions in Maple and G&R. For example, the function shown in A&S is numerically equal to the Maple command.
It is worth noting the difference between the Legendre normal form of the Incomplete Elliptic integral of the first kind (see A&S 17.2.7), in Maple represented by EllipticF(z,k) but for the splitting of the square root in the denominator of the integrand (see definition lines above), and the normal trigonometric form of this elliptic integral (see A&S 17.2.6), in Maple represented by the InverseJacobiAM function
InverseJacobiAM(phi,k);
(7) = convert((7), Int);
For instance, for -Pi/2 <= phi <= Pi/2 these two forms can be related with ease by changing variables:
EllipticF(z,k);
(9) = convert((9), Int);
{z=sin(phi), _alpha1=sin(_theta1)}; # -1 <= z <= 1
PDEtools[dchange]((11), (10));
simplify((12)) assuming phi in RealRange(-Pi/2, Pi/2);
where the right-hand side is actually equal to the trigonometric form . The general relationship between these two forms and the restriction on the values of the parameters such that the relation is valid are given by
FunctionAdvisor( specialize, InverseJacobiAM, EllipticF);
FunctionAdvisor( specialize, EllipticF, InverseJacobiAM);
Examples
Reflection symmetry and special values for EllipticK and EllipticF
Branch points for EllipticF
Branch points and the branch cut for EllipticK
For in the cut, so for , EllipticK is continuous from below.
See Also
EllipticCE, EllipticCPi, EllipticE, EllipticPi, FunctionAdvisor, InverseJacobiAM, JacobiAM, RealRange, WeierstrassP.
Download Help Document