Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[NullVector] - construct a null vector from a solder form and a rank 1 spinor
Calling Sequences
NullVector(sigmaphi)
NullVector(sigmaphipsi)
Parameters
sigma - a spin-tensor defining a solder form on a 4-dimensional spacetime
phi, psi - rank 1 spinors
Description
Let be a metric on a 4-dimensional manifold with signature A null vector satisfies
Let be a solder form for the metricthat is, is a rank 3 spin-tensor such that The NullVector command accepts, as its first argument, a solder form with either covariant or contravariant tensor and spinor indices.
With two arguments, the NullVector command returns the real vector with components
• With three arguments, the NullVector command returns the (complex) vector with components
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullVector(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-NullVector.
Examples
Example 1.
First create the spinor bundle with spacetime coordinates and fiber coordinates .
Define a spacetime metric on with signature .
Define an orthonormal tetrad on with respect to the metric Use the command SolderForm to create a solder form .
Define rank 1 spinors and
Use the command NullVector to find the corrresponding null vectors .
We can use the command TensorInnerProduct to check that the vectors are indeed null vectors.
See Also
DifferentialGeometry, Tensor, NullTetrad, PrincipalNullDirections, SolderForm, TensorInnerProduct
Download Help Document